Transformations computations‎: ‎Power‎, ‎Roots and Inverse

نویسندگان

  • A. Mansoori Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
  • H. Kamali Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
  • M. Ghorbanzadeh Department of Basic Science, Imam Reza International University, Mashhad, Iran
چکیده مقاله:

‎This paper presents some results of an annihilated element in Banach algebra‎, ‎and in specific case‎, ‎for any square matrix‎. The developed method significantly improves the computational aspects of transformations calculus and especially for finding powers and roots of any annihilated element‎. ‎An example is given to compare the proposed method with some other methods to show the efficiency and performance‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for implementing roots, inverse and inverse roots in hardware

In applications as in future MIMO communication systems a massive computation of complex matrix operations, such as QR decomposition, is performed. In these matrix operations, the functions roots, inverse and inverse roots are computed in large quantities. Therefore, to obtain high enough performance in such applications, efficient algorithms are highly important. Since these algorithms need to...

متن کامل

Roots, nitrogen transformations, and ecosystem services.

This review considers some of the mechanistic processes that involve roots in the soil nitrogen (N) cycle, and their implications for the ecological functions that retain N within ecosystems: 1) root signaling pathways for N transport systems, and feedback inhibition, especially for NO(3)(-) uptake; 2) dependence on the mycorrhizal and Rhizobium/legume symbioses and their tradeoffs for N acquis...

متن کامل

High-Speed Inverse Square Roots

Inverse square roots are used in several digital signal processing, multimedia, and scientific computing applications. This paper presents a high-speed method for computing inverse square roots. This method uses a table lookup, operand modification, and multiplication to obtain an initial approximation to the inverse square root. This is followed by a modified Newton-Raphson iteration, consisti...

متن کامل

High-level Transformations of Data Flow Computations

This article describes a systematic method and an experimental software system to perform high-level transformation of the functional design specifications prior to high level synthesis. The initial specification is first transformed into a canonical form and then converted into a data flow graph (DFG) optimized for a particular application. The optimizing transformations are based on a canonic...

متن کامل

Effective power series computations ∗

Let K be an effective field of characteristic zero. An effective tribe is a subset of K[[z1, z2, ...]] =K ∪K[[z1]] ∪K[[z1, z2]] ∪ ··· which is effectively stable under the Kalgebra operations, restricted division, composition, the implicit function theorem, as well as restricted monomial transformations with arbitrary rational exponents. Given an effective tribe with an effective zero test, we ...

متن کامل

The Roots of Power

Every year millions of square kilometres of the world’s forests are destroyed by fire resulting in huge economic costs, tremendous damage to the environment, destruction of property, loss of timber, and loss of life. Anywhere in the world where there is vegetation subjected to extended hot, dry periods there are frequent fires. This is approximately one third of the land surface of the Earth wi...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 07  شماره 01

صفحات  21- 38

تاریخ انتشار 2018-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023